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Turbulent Viscous Flows
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A method is presented for solving turbulent flow problems on three-dimensional unstructured grids.
Spatial discretization is accomplished by a cell-centered finite-volume formulation using an accurate lin-
ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward-
Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation
model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the
boundary layer. A systematic assessment of the method is presented to devise guidelines for more strate-
gic application of the technology to complex problems. The assessment includes the accuracy in predic-
tions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent
boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow
condition.

Introduction The assessments will be derived from the flat-plate

Significant advancements are being made toward solvingoundary layer problem, and the ONERA M6 wing at a
complex viscous flows on three-dimensional configurations Nigh Reynolds number, transonic, separated flow condition.
using unstructured-grid methodology [1-8]. While solving K€Y issues will be addressed related to applying a tetrahe-
such flows on highly-stretched tetrahedral cells is consider-dral based, cell-centered Navier-Stokes method to turbu-
ably more difficult than on hexahedral cells, the primary ad- lent-flow problems. The objectives of the study are to:
vantage is derived from the greatly reduced grid generation 1 gassess the accuracy of computing turbulent-flow
times. Ref. [9] has demonstrated that ‘viscous’ grids can be pressure distributions and skin friction coeffi-
easily generated on complex shapes by the Advancing Front  jents with tetrahedral cells,

I Advancing Layers methodology (AFM/ALM). Itis antici- 2 jnvestigate the accuracy and utility of a wall func-
pated that in the near future, viscous tetrahedral grids will tion formulation for computing 3-D high Rey-
be generated on complex geometries in a matter of days, as  npolds number, transonic, separated flow with tet-
are inviscid tetrahedral grids today. rahedral cells,

The viscous, tetrahedral-based unstructured flow solution 3. establish guidelines for generating unstructured,
methodology is maturing along two tracks; node-centered ~tetrahedral ‘viscous’ grids for solving turbulent
and cell-centered schemes, each with their relative merits. flow problems accurately and efficiently,
Node-centered schemes exploit an efficient edge-based data 4- demonstrate a mesh sequencing strategy for accel-
structure, and have demonstrated multigrid and parallel erating solution convergence.
computer implementations [2,5], but generally require large . i
tetrahedral grids. Cell-centered schemes exploit geometric Governing Equations

features of tetrahedra for constructing accurate spatial re- The fluid motion is governed by the time-dependent
construction schemes, and provide comparable accuracyNavier-Stokes equations for an ideal gas which express the
with fewer tetrahedra, but have not been extended to multi-conservation of mass, momentum, and energy for a com-
grid or parallel architectures, and have exhibited some limi- pressible Newtonian fluid in the absence of external forces.
tations in solution stability. The equations are given below in integral form for a

: . bounded domai with the boundargQ
There is a need for systematic assessments of the accu-

racy and behavior of the various schemes. The present work P

focuses on an assessment of the upwind, tetrahedral cell- aII!QW +U‘F(Q) Eﬁds:J'J‘G(Q) hdS 1)
centered finite-volume scheme of Ref. [10]. This method is o} o}

extended herein to include the Spalart-Allmaras one-equa-

tion turbulence model, and the coupling of that model with a whereQ = [p, pu, pv, pw, &.] !

wall function to reduce the number of cells in the sublayer

region of the boundary layer. It is anticipated that the wall and

function approach may be applicable to 3D separated flows

since flow is not stagnant along separation lines. p 0
P r—— . . f
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Laminar viscosityl, is computed by Sutherland’s law. With
the ideal gas assumption, the normalized values for pressure
and temperature can be expressed as

1
p=(y-1) Epo—ép(u2+v2+w2)g
and

T =yp/p

wherey is the ratio of specific heats and is prescribed as 1.4
for air.

Numerical Procedure

A finite-volume discretization is applied to Eq. 1 which
results in a consistent approximation to the conservation
laws where the time rate of change of the state vegtor
within the domaimQ is balanced by the net fluxes 6fand
G across the boundary surfag@ . The spatial domain is
divided into a finite number of tetrahedral cells, with each
element serving as a computational cell. Thus, the dis-
cretized solution to Eq. 1 results in a set of volume-averaged
state variable€) which are in balance with the area-aver-
aged fluxes (inviscid and viscous) across the cell faces.

Inviscid Fluxes

Inviscid flux quantities are computed across each cell
face using the Roe [11] flux-difference splitting approach
(FDS), or the Van Leer [12] flux-vector splitting technique
(FVS). Spatial discretization is accomplished by a novel cell
reconstruction process, which is based on an analytical for-
mulation for computing solution gradients within tetrahe-
dral cells.

Cell reconstruction scheme

The higher-order reconstruction scheme, derived in Ref.
[10] and illustrated in Fig. 1, is based on a Taylor series ex-
pansion of the cell-averaged solution to the cell face. A key

The equations are nondimensionalized with freestream
reference values for densify, and a speed of soury] .
Herep,, i, andh, are Cartesian components of the exte-
rior surface unit normah on the boundargQ . The Carte-
sian velocity components are u, v, and w in the x, y, and z
directions, respectively. The tergy is the total energy per
unit volume. The Prandtl number, Pr, is assigned a value of
0.72, and the turbulent Prandtl numbet,, Fne value 0.9.

e - Cell-centroid
m - Cell-vertex (determined by weighted averag
0 - Face-centroid
o m - (puvwp
4
\ 3
1
2

O=e + 140[1/3(m +my+m3)-m,]

where ® =0, 1storder
=1, higher order

Fig. 1 Reconstruction stencil for tetrahedral cell-centered
scheme.



component of the scheme is the reconstruction of surround- [A]"{0Q}" = {R}" ©)
ing cell-averaged data to a common vertex or node by a
weighted averaging procedure. Reference [13] proposed
scheme based on an inverse-distance weighted averaging o
the primitive variables from the cell centroid to the cell ver-
tices. While this approach has proven to be both accurate
and robust through wide application to inviscid problems, it
is not fully second-order accurate in space. It has been
shown in Ref. [14] to be approximately 1.85-order accurate.

here

n
n_ VR

A= & 0Q

The linear system of equations are solved at each time
step with a subiterative procedure where the tetrahedral
As development efforts progressed toward solving the cells are grouped into “colors” (different from face-color-

Navier-Stokes equations on highly stretched tetrahedraling) such that no two cells share a common face.
grids, it becar_ne evident that the accuracy of the inverse-dis- Thus, the solution is computed by solving for all the un-
tance averaging scheme was not adequate. Thus, a fully se&—

ond-order accurate averaging procedure was implemente nowns in a particular color by a point-Jacobi subiteration
e tep before proceeding to the next color. Since the solution
which is based on work by Holmes and Connell [4] and p b 9

R h et al 5] Th d ‘s derived b Vi of the unknowns for each group can depend on those from
austc : ed al. [15]. i € progtla ur;a '(Sj terlv_e y $°h¥']’39 4previously computed groups, a Gauss-Seidel-like effect is
constrained minimization problem to determin€ WeIght 1ac- o 5764, The method has the advantage of being completely

tors which satisfy Laplacian relationships presented in Ref.

[10]. The algorithm reconstructs to machine accuracy thevectorlzable.

exact values of a linear function at a node from surrounding Because of the number of operations required to invert a
cell-centered function values on an arbitrary tetrahedral matrix depends on the matrix bandwidth, the left-hand side
grid. Furthermore, the simple universal formula shown in of the system of linear equations is evaluated with first-

Fig. 1 for expanding the cell-centered data to the cell facesorder differencing to reduce both required storage and com-
also reconstructs the exact value of a linear function to theputer time. Convergence of the subiterations is further ac-
cell face. Thus, the entire spatial reconstruction scheme iscelerated by using Van Leer's Flux Vector Splitting (FVS)

termed second-order accurate, which has been verified byon the left-hand side. Thus in the present study, first-order
Mitchell [14]. differencing and FVS are applied to the left-hand side, and
higher order differencing and FDS to the right-hand side.

The viscous Jacobian terms are included in the left-hand
side of the equation.

There is, however, an unresolved shortcoming to the
Laplacian-weighted averaging scheme. Each weight factor
is assumed to vary by some small perturbation from 1. In
order to achieve an exact reconstruction on highly stretched It is necessary to storpA] ", which is a 5X5 matrix for
cells, these perturbations can actually become on the ordeeach cell, thus, storage requirements are 180 words/cell for
of one, thus resulting in some negative weight factors. the implicit code. The code requires gd/cell/cycle on a
While it can be demonstrated that the computed weight fac-CRAY Y-MP, or 37us/cell/cycle on a CRAY C-90, with 20
tors produce an exact linear reconstruction, those with negasubiterations and higher-order differencing. For compari-
tive values violate the principle of positivity, with a detri- son, the block-structured code CFL3D [19] requires approx-
mental impact on stability during convergence [16,17]. It is, imately 50 words/cell and 1&/cell/cycle on a Cray C-90.
thus, necessary to clip the weight factors between 0 and 2While there may be some room for further improvement in
thereby losing some of the exactness of the linear recon+esource requirements of the unstructured code, such codes

struction, but ensuring a more stable scheme. are typically more computer-intensive because of their gen-
eralized data structure. The success of this new technology
Viscous Fluxes will hinge on reducing the time and expense of generating

The viscous fluxe&(Q) are approximated at the cell-face Viscous grids.
centroids by linear reconstruction which provides a continu-
ous representation of the solution variables across the cellConvergence acceleration
faces. The stencil, presented by Mitchell [14], utilizes the  Convergence to the steady state solution is accelerated by
averaged solution quantity at the three vertices of a cellsacrificing the time accuracy of the scheme, and advancing
face, dy, Ona, @nddy,s, and the cell-centered values of the the equations at each mesh point in time by the maximum

two cells sharing the facg,, andq., whereg=(p,u,v,w,p).  permissible time step in that region. Even with such a local
The derivatives for u, v, w, and T in Eqg. 1, e.g. digru,, time stepping strategy, experience with solving 3-D viscous
andu, are derived from a Cramer’s rule solution to problems with the present cell-centered scheme has shown

that maximum Courant, Friedrichs, Lewy (CFL) number is
limited to approximately 25. This limitation is a conse-

Xe2=Xe1 Ye2 = Yer Zea— Zea| | Uk Ugo— U . . . . ey . . . .

X Z_X ' v z_y ! ; Z_Z ' wl = 1y z_u ! ) guence of violating the principle of positivity in weighting
S nzoom factors, as noted an earlier section and in Refs. [16, 17].

Xn3 ™ Xn2 Yna = Yn2 Znz—Zng |Y; Upz—Upy

The inherent stability limitation can be improved by scal-
Time Integration ing the CFL numbe.r according to the_ deV|at_|on of cell as-
The viscous computations are advanced to steady state bE}e?t ratio from the |d¢al value O.f an isotropic tet'rahedr'on.
his enables the dominate flow field to evolve quickly with

e Ch o s it e Plher CEL numbers whie esticing the more teper-
. ' . . amental ‘viscous’ cells. A relation has been derived
ing approach to update the solution at each time step for the

set of equations
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=100 1-AR [ 4 ident in Fig. 2, the tetrahedral vertices or nodes are aligned
[1_5 for DDl—ARmmD] ) along rays emanating from the surface.

where AR = [9(V)*/ (S a0 1/ARear AReq=8/ (33

andf, is a scale factor. Here, \is the cell volume, and 2K
Simax IS the area of the largest face of the cell. N

The computations presented in this paper were performec P -
with a scale factor dfy=6. Thus, for a prescribed setting of R e S

CFL=150, the actual CFL number will be linearly scaled -1
between 25 for the thinnest tetrahedral cell to 150 for the =S
most isotropic cell. The ultimate benefit of this procedure W
was a factor-of-two reduction in required solution cycles

and, hence, computer time.

Turbulence Model

Spalart-Allmaras

Closure of the Reynolds stress is provided by the one-
equation Spalart-Allmaras (S-A) turbulence model [20]. Fig. 2 Inherent “structure” of thin-layer tetrahedral grids.
This model is derived “using empiricism and arguments of
dimensional analysis, Galilean invariance, and selective de- The selected wall function is a law-of-the-wall expression
pendence on the molecular viscosity”. The model solves a[22] derived by Spalding in 1961. With a single function, it
partial differential equation (PDE) over the entire field for a models the inner laminar sublayer, a transition region, and
working variable,v, from which the eddy viscosity, can the intermediate logarithmic layer of the turbulent boundary
be extracted. The PDE is solved separately from the flowlayer:
equations using the same backward Euler time integration
scheme, which results in a loosely coupled system. The pro- . + 2 +
duction and destruction terms have been modified as recom- n" = u"+ e'KB[eKu —1—Ku+—% —%]} 5)
mended in Ref. [20] to ensure positive eddy viscosity

throughout the computation. . . .
g P where the nondimensionalized terms are

On ‘no-slip’ surfaces, the dependent variablés set to

zero. For tangent-flow surfaces, a zero gradient of the vari- n = BR_GLErM . u'= Vil

able is applied. Far field boundary conditions are applied by Mo = My U,

extrapolatingv from the interior for outflow boundaries,

and taken from the free stream for the inflow. Herep,, 1, are the fluid density and laminar viscosity on

the surface, respectively, and,||¥he velocity magnitude at
an adjacent point located a normal distancaway;u. is
the friction velocity;k=0.4 and B=5.5.

The S-A model requires that the distance of each cell to
the nearest wall be provided for the near-wall damping
terms for cells which are in proximity to ‘viscous’ surfaces.
These distances are determined prior to code execution for A face-centered, “slip” velocity boundary condition is de-

cells in the “viscous” layers and contribute to only a small termined by a two-step process. First as illustrated in Fig. 2,

portion of the overall overhead. pw andy, are assigned values from a boundary node, and
_ |V,| is defined by the reconstructed velocity magnitude at
Wall Function the first connected node which is locatgdahove the sur-

The S-A model has been coupled with a wall function for- face. Eq. 5 is then solved by Newton-Raphson iteration for
mulation to reduce the need for grid-resolving the flow in u., which is assumed to apply at the boundary nodes.
the sublayer portion of a turbulent boundary layer. With this

approach, the inner region of the boundary layer is mOdeIednodes comprising a boundary face (shaded surface in Fig. 2)

by an analytical function which is matched with the numeri- are averaged to establish a face-centered value, and standard
cal solution in the outer region. This has the advantage of 1) 9 y

C : . -2 “face-centered flow boundary condition quantities are pre-
significantly reducing memaory requirement by eliminating . : X
a large portion of cells normally required to resolve the sub—ScrIbEd forr1pw anduw. Thfe rﬁ)arameter,lm IS thi norrr|1al ﬂ's' ith
layer, and 2) improving overall convergence by removing [2Nc€ 10 the centroid of the boundary tetrahedral cell. Wit
the thinner, more highly stretched cells which add stiffness tr:)isﬁe\:g![lijoens’f(i%g l/seﬁ)ocli\;edm(;n%eitfgg'nvgysll\ile_\c/(ta?gé_Raph'
to the solution process. A similar approach was successfully.S @ velocity mag VA slip
demonstrated in Ref. [21] where a two equaticnthbu- ity boundary condition is defined by assigning the neyw |V

lence model was coupled with a wall function in a modified to the boundary face, and multlplyl_ng_lt with direction co-
version of the present code. sines extracted from a standard inviscid-type flow-tangency

velocity vector.

Next, the computed friction velocitiesy, from three

The present implementation of a wall function exploits
the inherent “structure” present in viscous unstructured
grids produced by the Advancing Layers Method [9]. As ev-

A wall boundary condition for turbulent viscosity, which
is required by the S-A PDE equation, is computed from a re-
lation presented in Ref. [22]



ing procedure discussed in an earlier section. Note that the
first nodal value is matched with the log layer at approxi-
mately =80 for both grids. Grid 1 has 5 nodes across the
boundary layer, while Grid 2 has 3 nodes.

o . + 2[]
W, = pKe_KBD - —1—Ku+—@-g (6)

where u=|V,|/u. from the boundary face.
The present implementation considers no adjustment to

adiabatic wall density, which is important to high speed 30 T T T T T
flows. This effect will be included in future work. —
25
Results L ﬁ&@%}
Results are presented below for the flat-plate boundary 20
layer problem, and the ONERA M6 wing at high Reynolds L % ]
number, transonic, separated flow conditions. The normal + 45 g%
grid spacing across the boundary layer is prescribed by the u | |
exponential function
10 — Spalding [
C1i- - Grid 1 -
An; = An, (L+a(l+b)' ™) () 5 0 crdz |
such that p=nj,, +An;. o L LI | mm\‘ \ \mm‘ L L
The parametefn, is the spacing of the first node above 10" 10! 10° 10° 10*
the surface, whil@ andb are parameters which control the .
growth. An initial estimate of the normal point distribution, n
n*, etc., is determined by experimenting with parameter
variations on an assumed 1/7th law velocity profile. Fig. 3 Effect of grid density on law-of-the-wall behavior for

flat-plate boundary layer flow, x/L=0.5 (M,,=0.5, RQ:2X106).
Flat-Plate Boundary Layer
The flat-plate boundary layer solution is used to assess The true test of the methodology is reflected in the skin
the accuracy of the wall function in predicting flat-plate tur- friction coefficient in Fig. 4. Grid 1 displays excellent
bulent skin friction. The computations were made on quasi-agreement over 0.2<x41.0 with the theoretical coefficient
2D unstructured grids fou,,=0.5, Rg=2x10P. for fully turbulent flow, C, = 0.0583( Re) “®, which is

. . based on the 1/7th power law assumption. Grid 2 does not
Grid 1 was generated by constructing a 49X12 H-topol- pow W umpt I

ogy structured grid with a normal spacing defined by
An,=0.001L, a=0.3, andb=0.07 in Eq. 7, which yields
roughly 5 nodes across the boundary layer at x/L=0.5 and

an approximate nat the first node of 80. The resulting 10

upper domain boundary (k=12) is located at 0.22L. The 2D

grid was stacked spanwise in 0.02L increments to form 8

three planes resulting in a 3D structured dual-channel grid

(49X3X12) of H-H topology. Each hexahedral cell was sub- 6

divided into 2 prismatic cells, which were further subdi- “

vided into 3 tetrahedra each to form the 3D unstructured

grid with 15,552 cells. The “flat plate” was defined by a co- 4

sine clustering between the “structured” indices

15<i<49along thek=1 boundary with inviscid flow pre- 2 —

scribed on thé&=1 boundary ahead of the plate. Boundary
conditions of constant entropy and constant total enthalpy e
were prescribed on the inflow plane, while an extrapolation 0.0 0.2 0.4 0.6 0.8 1.0
condition was applied to the upper and exit domain bound- ’ ’ ’ ) ) )
aries. A constant freestream pressure was also imposed or x/L

the exit plane.

Fig. 4 Effect of grid density on skin-friction coefficient for flat-
A second grid was generated in a similar manner as theplate boundary layer flow (M,,=0.5, Rg =2X1(F).
first to explore the lower limits of grid coarseness on solu-
tion accuracy. Grid 2 was constructed from a 49X6 H-topol-
ogy with the Eq. 7 parameters Ah,=0.001L,a=2.0, and exhibit the same level of agreement, but is remarkably close
b=0.07. This resulted in a 3D channel grid (49X3X6) with considering its extreme grid coarseness across the boundary
2,880 cells, and an upper domain boundary (k=6) also atiayer in Fig. 3.

0.22L. Based on experience with structured-grid computations,
Fig. 3 portrays the effect of normal grid density on the one would expect to need between 15 and 40 cells to ade-
law-of-the-wall behavior at x/L=0.5, Relx10?, for the two guately resolve turbulent boundary-layer flow, Thus, the re-
grids. The plotted nodal solutions were reconstructed fromsults of Figs. 3 and 4 require further analysis. As noted ear-
the surrounding tetrahedral cells using the weighted averagdier, each hexahedral cell is subdivided into 2 prismatic

5



and 2). The spatial sources for the background grid

prescribed to produce a coarse (6483 triangles) and a
(8956 triangles) surface grid distribution on the wing

(see Fig. 5), and remained unchanged thereafter. Anisotro-

Several tetrahedral grids, eight thin-layered and one con-
entional, were generated for the ONERA M6 wing (see

tion resolves the solution at three vertical positions within Taples 1
each prismatic cell, (for a total of six locations within the \yere
hexahedral cell). In contrast, a cell-centered structured-gridfine
code [19], or prismatic unstructured code [23], would re-

cells, which are each subdivided further into 3 tetrahedral Test matrix
solve the solution at only one vertical position within their

cells. For a cell-centered scheme, each tetrahedron func-
tions as one computational cell. Thus, a cell-averaged solux,
respective cell layers. Hence in Fig. 3, there are actually 3
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viscous grid, 8956 triangles on wing surface.

resolved spatially by three computational cells for a tetrahe-Fig. 5b Upper surface triangulation of ONERA M6 wing, fine

dral cell-centered scheme.



pic stretching of the surface grids was applied in the span-The numerical homenclature, e.g. 2-6, provides a nominal
wise direction to reduce the total number of required cellsindicator of the (initial spacing)-(number of nodes across
while maintaining good chordwise resolution. A typical off- boundary layer) at the 0.5 mean aerodynamic chord for a
body distribution of volume grid for the coarse mesh is indi- Re,,=11.%10F.

rectly reflected in Fig. 6 by the centerplane grid of the WF2-
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Fig. 6 Center plane triangulation of ONERA M6 wing, coarse
grid, WF2-6(C).

6(C) configuration. Note the smooth transition from the lay-
ered ‘viscous’ grid to the conventional inviscid grid. As is
evident in Fig. 6, the grid has characteristics of a structured
O-mesh, since clustering of cells in the wake region has no
been applied. Wake clustering is a topic for future research.

Table 1. - Designations for ONERA M6 viscous tetrahedral

grids
Number of cells (nodes) across boundary
Initial Spacing layer
4
(Any/ Croor) X 10 =12cells | =18cells | =30 cells
(4 nodes) (6 nodes) | (10 nodes)
0.6 - FV-82 —
1.350 - WF1-6 —
2.025 WF2-4 WF2-6(C,F) WF2-10
4.050 - WF4-6 -
6.075 --- WF6-6 ---

includes two additional points in the inner layer

Table 2. - Parameters and characteristics of viscous grids.

Number|Number o (No.,)
Grid a b |surface| cells, #‘“S”“S
(see Eq. T(see Eq. 7 t”ang|es Ncell cell/ Inviscid
Inviscid 6483 258,768 m———
F\V-8 0.5 0.07 6483 414,038 1.60
WF1-6 0.95 0.07 6483 356,093 1.38
WF2-4 2.2 0.00 6483 324,356 1.25
WF2-6(C)| 0.8 0.07 6483 356,472 1.38
WF2-10 0.2 0.07 6483 463,968 1.79
WF4-6 0.56 0.07 6483 359,268 1.39
WF6-6 0.432| 0.07 6483 362,311 1.40
WF2-6(F)] 0.8 0.07 8956 578,556 P

t

The full viscous grid, FV-8 was designed to have approx-
imately the same number of nodes in the outer layer of the
boundary layer as the WF2-6 grid, i.e. six nodes (18 tetrahe-
dral layers), plus two additional nodes in the sublayer, for a
total of 8 nodes (24 tetrahedral layers).

A conventional inviscid grid was generated from the
same wing surface grid, and with the same spatial source
distributions as the viscous grids, thus, serving as a refer-
ence for measuring the additional cells requirements for vis-
cous grids as shown in Table 2. Note that the viscous grids
require from 25-percent for the WF2-4 with 324,356 cells
(57,490 nodes) to 79-percent for the WF2-10 with 463,968
cells (80,927 nodes) more tetrahedral cells than the standard
inviscid unstructured grid. It is obvious from this table that
grid size can become rather large if more cells are needed
across the boundary layer. This factor highlights the strong
need for techniques, such as a wall function, to keep the
‘viscous’ overhead down to manageable levels.

A structured-grid computation was repeated from Ref.
[19] for comparison with the unstructured results. The grid
consisted of a 19@19x33 C-O mesh (294,912 hexahedral
cells) with a minimum normal spacing over the wing of
0.000015g401- This spacing matches that of the centroid of
the surface tetrahedral cells in the FV-8 grid. Ref. [19] re-
ports that this initial spacing resulted in an averagef
over the wing for M=0.84,0=3.08, Re,,=11.71CF.

Solution convergence

All turbulent flow computations in this study were per-
formed at the flow conditions of }0.8447 a=5.08, and
Re,.&11.710, which represents a high Reynolds number,
transonic, separated-flow condition. A typical solution con-
vergence is shown in Fig. 7.
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Fig. 7 Solution convergence history for WF2-6(C),
(M,,=0.8447,0=5.06", Rgy,,=11.7X16)

The reason for the leveling off of the residual curve at 3-
orders of magnitude reduction is not fully understood, but
may be due to an unsteady nature of complex flow separa-
tion in the wing-tip region. Note that the lift coefficient sets
up quickly, but it is necessary to run the solution longer to

The designations “FV” and “WF” in Tables 1 and 2 de- allow for the separated region to evolve fully.

note “full viscous” with grid resolved sublayer, and “wall
function” with non-grid resolved sublayer, respectively.

Resource requirements for the computations are pre-
sented in Table 3. All of the viscous cases were run with



CFL numbers starting at 20 and ramping up to 150 over 20tions, a full-viscous structured solution [19] obtained with
cycles. The computations include the cell aspect ratio basedhe CFL3D code, and a reference unstructured inviscid re-
variable CFL scaling strategy discussed earlier withi=8 sult. The comparisons are presented at the four span stations
applied. The time for the FV-8 case is based on mesh se-
guencing which will be described in a later section. Unre-
solved difficulties were encountered while attempting to
start the full-viscous case from freestream initial conditions.

Table 3. - Resource requirements for unstructured cases.

Grid Number of | Cray C-90| Memaory,

cycles time, hours MW
Inviscid 300 0.6 46
FV-8 900/425 5.9 75
WF1-6 1500 5.78 64 - o Dat
WF2-4 900 3.05 59 —_ FV-8
WF2-6(C) 2000 7.34 64 o \éngzs—Ds(c)
WF2-10 2500 12.38 84 Tnviscid
WF4-6 1500 5.75 65
WF6-6 1500 5.88 66
WF2-6(F) 2500 15.53 104 [ 9=095
%obtained with mesh sequencing - . | . |

The structured-grid computation was performed with
CFL3D using a multigrid strategy. The solution was con-

verged in 500 cycles, and required 16MW and 0.66 Cray C- o
90 hours. Fig. 9 C, distributions from unstructured and structured

grids for ONERA M6 wing. (M ,,=0.8447,0=5.08,

Comparison of methodologies Rénac=11.7X10).

Fig. 8 displays, the surface flow patterns for the FV-8

denoted on Fig. 8. The unstructured viscous results are in
the best agreement with the experimental data of Ref. [25].
Furthermore, the wall-function solution, WF2-6(C), is in
good agreement with the full-viscous solution, FV-8.

The structured result in Fig. 9, which also employs the
Spalart-Allmaras turbulence model, generally predicts the
shock location too far forward and misses the aft-chord
pressures. However, Ref. [19] demonstrated a strong depen-
dence of the flow solution on the selection of turbulence
model. Better agreement with data was shown in Ref. [19]
using other turbulence models. As a note of caution, the
good agreement of the unstructured results)&.90 may
be fortuitous since the flow structure at the wing tip in Fig.
8 is extremely complex and may exceed the capability of
the one-equation S-A turbulence model.

Surface grid sensitivity

Fig. 10 shows the effect of surface grid density on the
chordwise G distributions at four chord stations. The WF2-
6(C) & (F) have identical initial grid spacings. The sensitiv-
ity to surface grid is small at thg=0.65 and 0.80 stations
Fig. 8 Surface “oil-flow” patterns for ONERA M6 wing, FV-8 where the separation is somewhat well behaved. Differ-
grid (M ,=0.8447,0=5.06, Ren=11.7X16). ences are much larger in proximity to the more complex

flow region forn=0.90. The fine grid is in better agreement

with the structured-grid result at the latter two stations,
case, which reveals a substantial shock-induced separatiowhich once again highlights the strong sensitivities of the
on the outboard portion of the wing. These patterns were deflow in that region. Although sensitivities to surface grid
termined from the reconstructed velocities at the first nodecan be large in the complex tip flow region, the parametric
above the wing surface. The general pattern shown in Fig. 8study of normal grid spacing was performed on the coarser
is representative of that from all the WF-series wall-func- surface grid in order to reduce the overall computational ex-
tion solutions. pense.

Fig. 9 portrays a comparison of longituding d@stribu-
tions for unstructured full-viscous and wall function solu-
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Fig. 10 Effect of surface grid density on distributions for +

ONERA M6 wing. (M,,=0.8447,a=5.06", Rep,=11.7X10). e

. . Fig. 12 Effect of normal grid density on law-of-the-wall behav-
Normal grid density . _ ~ jor at x/c=0.5, 2y/b=0.15 for ONERA M6 wing. (M,=0.8447,
Fig. 11 depicts the effect of normal grid density (a hori- a=5.06, Re,,=11.7X16).

zontal cut across Table 1) on the chordwigeli€tributions
at four chord stations. The three solutions, which representeffect of initial grid spacing

Fig. 13 shows the effect of initial grid spacing (a vertical
cut through the WF-series of Table 1) on the chordwijse C
distributions at four chord stations. Each grid is sized to

Fig. 11 Effect of normal grid density on G, distributions for
ONERA M6 wing. (M,,=0.8447,a=5.06", Rey,=11.7X10).

Fig. 13 Effect of initial nodal spacing on G distributions for
12-, 18-, and 30-cells across the boundary layer, are genero,%ERA M6 wing. (M :0.8447pa:5.%6’ Rgem =11.7X16).
ally in good agreement with each other and the experimen- ” ' Lomac

tal data.

The law-of-the-wall behavior of the boundary layer for an have approximately 6 nodes (18 tetrahedra) across the
attached-flow region of the wing (x/c=0.8y/b=0.15), is boundary layer at the midchord of the mean aerodynamic
plotted in Fig. 12. The fixed initial spacing yielt=71 for chord. For the test flow conditions, the initial grid spacings
all three cases, while there are 4, 6, and 10 nodes across théeld an rf of 48, 71, 146, and 218 for the first node of the
boundary layer corresponding to the WF2-4, -6, and -10, re-WF1-6, 2-6, 4-6, and 6-6, respectively, at x/c=0.5, 2y/
spectively. Recall that there are three tetrahedra betweer=0.15. The sensitivity to initial spacing is negligible for all

each nodal point contributing to the reconstruction of the cases at thq=0.65 and 0.80 stations, and for WF1-6 and
solution to the nodes. WF2-6 atn=0.90 and 0.95. As mlght be expected, the

agreement with data deteriorates at the higher values of n



for n=0.90. This result suggests that fairly large values of n the order of 40- to 45-percent for the cases shown. (A sav-
can be applied in conjunction with a wall function for more ings is not included for the FV-8 because of difficulties in
well behaved separated flows. However, more restrictedobtaining a single-grid solution for that case.) An additional
values should be used in regions with complex 3D separatedenefit is derived from the lower memory usage of the
flow structures, such as spiral separations or primary saddlecoarse-grid solution (59 megawords for the WF2-4), thus
points, as depicted in Fig. 8. enabling primary flow to be setup more quickly while run-
ning in smaller queues on heavily used computers.

Mesh Sequencing

The mesh sequencing strategy is often employed as a Concluding Remarks
means of accelerating solution convergence. This strategy A systematic study has been initiated to assess the utiliza-
involves establishing the primary flow field relatively tion of the cell-centered unstructured scheme for obtaining
quickly around a configuration using a coarse mesh, thenaccurate solutions to the Navier-Stokes equations on three-
transferring that solution onto a finer mesh to complete thedimensional configurations in an efficient manner. Closure

final grid-resolved solution. to the flow equations is provided by a one-equation Spalart-
A demonstration of this procedure is provided for two of fAJLmCSCr)iS turbulence model, which is coupled with a wal

the more costly wall function solutions from Table 3, the
WF2-6(F) and WF2-10, and for the full viscous case, the Excellent accuracy in predicting the law-of-the-wall be-
FV-8. Fig. 14 compares computer time requirements (in havior and surface skin friction coefficient with tetrahedral
cells was demonstrated for the flat-plate boundary layer
problem. The applicability of the tetrahedral-based wall
2 —r———— 0.6 ————— function approach to 3D high Reynolds number, transonic,
separated flow was validated on a parametric set of grids for
ro 1 r 1 the ONERA M6 wing. The validations were supported by
/ comparisons with experimental data and a companion struc-
tured-grid solution. The parametric study revealed that rea-
sonable viscous solutions can be obtained with approxi-
mately 25- to 80-percent more cells, hence memory, than a
standard anisotropically stretched inviscid grid. Guidelines
are established for prescribing an efficient distribution of
normal grid spacing. A 40- to 45-percent solution conver-
SR SRR S ol 1 . 1 gence acceleration was demonstrated using a mesh sequenc-
0 5 10 15 0 5 10 15 ing strategy.

Cray C-90 time, hrs Cray C—90 time, hrs

While the present study concludes with useful guidelines
. ' . and better understanding of the base methodology, the next
Fig. 14 Effect of mesh sequencing on solution convergence for  step of applying this knowledge to more complex geome-

WF2-6(F) grid. (solid - single grid solution, dash - mesh tries is important. Work is currently underway toward that
sequenced solution), M=0.8447,0=5.06, Remac:11.7X1(§. end.

Cray C-90 hrs) to obtain convergence of residual error and Ack_nowledgments .

lift coefficient for the WF2-6(F) mesh. The solid curve ap- _ 1he author would like to thankr. Shahyar Pirzadeh
plies to the single-grid computation which took 15.5 Cray YIGYAN, Inc., for generating the tetrahedral grids used in
C-90 hours for 2500 cycles. The dashed line denotes the apiS Study. The support @r. Paresh Parikh, Paragon Re-
plication of mesh sequencing, starting from the coarse gridsearCh' Inc. in performmg the solution interpolations for
WF2-4 solution at 900 cycles (see Table 3), interpolating MeSh sequencing is gratefully acknowledged. The author
that solution onto the WF2-6(F) grid, and continuing to run Wishes to thankr. Christopher L. Rumsey, Aerodynamic

for another 700 cycles with CFL=150. The history plots in &nd Acoustic Methods Branch (AAMB) at NASA Langley

Fig. 14 do not refiect the additional computer time used for R€search Center (LaRC) for providing the supporting struc-
interpolating the solution from coarse to fine mesh. tured grid and flow solver. The consultation and advice of

Dr. W. Kyle Anderson, AAMB at NASA LaRC, toward
The full benefit of mesh sequencing is presented in Tableimplementing the Spalart-Allmaras turbulence model is ac-
4 for the three candidate cases, which includes the overheaéinowledged and greatly appreciated. The computations
of interpolating solutions. Note that the total savings is on were performed on the Numerical Aerodynamic simulation
i i (NAS) facility and the Aeronautics Consolidated Super-
Table 4 .- Resource requirements for mesh sequencing from computing Facility (ACSF) at NASA Ames Research Cen-
coarse grid, WF2-4. ter, and on the Cray Y-MP at NASA LaRC.
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WF2-10 2.4 300 6.9 44 2Barth, T. J. and Linton, S. W.:, “An Unstructured Mesh New-
FV-8 1.1 425 5.9 ton Solver for Compressible Fluid Flow and its Parallel Implemen-

tations”, AIAA 95-0221, January 1995.

10



3Chalot, F., Mallet, M., and Ravachol, M.: “A Comprehensive 25Schmitt, V. and Charpin, F.: “Pressure Distributions on the
Finite Element Navier-Stokes Solver for Low- and High-Speed ONERA M6-Wing at Transonic Mach Number”, AGARD Advi-
Aircraft Design”, AIAA Paper 94-0814, January 1994. sory Report 138, May 1979.

“Holmes, D. G., and Connell, S. D., “Solution of the 2D Navier-
Stokes Equations on Unstructured Adaptive Grids”, presented at
the AIAA 9th Computational Fluid Dynamics Conference, June,
1989.

SMavriplis, D. J., “A Three Dimensional Multigrid Reynolds-
Averaged Navier-Stokes Solver for Unstructured Meshes”, NASA
CR 194908, May, 1994.

SMarcum, D. L.; and Agarwal, R. K.: “A Three-Dimensional Fi-
nite Element Flow Solver with &-Turbulence Model for Unstruc-
tured Grids.” AIAA Paper 90-1652, 1990.

"Nakahashi, N., “FDM-FEM Zonal Approach for Viscous Flow
computations Over Multiple Bodies”, AIAA Paper 87-0604, Janu-
ary, 1987.

8Ward, S., and Kallinderis, Y.: “Hybrid Prismatic Tetrahedral
Grid Generation for Complex 3-D Geometries”, AIAA Paper No.
93-0669, January 1993.

9Pirzadeh, S.: “Viscous Unstructured Three-Dimensional Grids
by the Advancing-Layers Method”, AIAA Paper No. 94-0417,
January 1994.

10Frink, N. T.: “Recent Progress Toward a Three-Dimensional
Unstructured Navier-Stokes Flow Solver”, AIAA 94-0061, Jan.
1994.

"Roe, P. L.: Characteristic Based Schemes for the Euler Equa-
tions. Annual Review of Fluid Mechanicgol. 18, 1986, pp. 337-
365.

2van Leer, B.: “Flux-Vector Splitting for the Euler Equations”,
Eighth International Conference on Numerical Methods in Fluid
Dynamics E. Krause, edVYolume 170 of Lecture Notes in Physics
Springer-Verlag, 1982, pp. 507-512.

BFrink, N. T.: “Upwind Scheme for Solving the Euler Equa-
tions on Unstructured Tetrahedral MesheslAA Journa Vol.,

No. 1, January, 1992, pp. 70-77.

MMitchell, C.R.: “Improved Reconstruction Schemes for the
Navier-Stokes Equations on Unstructured Meshes”, AIAA Paper
94-0642, January 1994.

BRausch, R. D., Batina, J. T., and Yang, H. T. Y., “Spatial
Adaption Procedures on Unstructured Meshes For Accurate Un-
steady Aerodynamic Flow Computation.” AIAA Paper 91-1106,
April, 1991.

%Barth, T. J.: “Numerical Aspects of Computing Viscous High
Reynolds Number Flows on Unstructured Meshes”, AIAA Paper
91-0721, January 1991.

YCoirier, W. J.: “An Adaptively-Refined, Cartesian, Cell-Based
Scheme for the Euler and Navier-Stokes Equations”, NASA TM-
106754, October 1994,

18Anderson, W. K.: “Grid Generation and Flow Solution
Method for Euler Equations on Unstructured Grids”, NASA TM-
4295, April 1992.

Rumsey, C.L. and Vatsa, V.N.: “A Comparison of the Predic-
tive Capabilities of Several Turbulence Models Using Upwind and
Central-Difference Computer Codes”, AIAA Paper 93-0192, Janu-
ary 1993.

2Spalart, P.R. and Allmaras, S.R.: “A One-Equation Turbu-
lence Model for Aerodynamic Flows”, AIAA Paper 92-0439, Jan-
uary 1992.

2IKwon, O. J. and Hah, C.: “Solution of the 3-D Navier-Stokes
Equations with a Two-Equation Turbulence Model on Unstruc-
tured Meshes Applied to Turbomachinery”, AIAA 94-1833, June
1994,

2ANhite, F.M.:Viscous Fluid FlowMcGraw-Hill, Inc., ISBN 0-
07-069710-8, 1974.

2Khawaja, A., McMorris, H., and Kallinderis, Y.: “Hybrid
Grids for Viscous Flows around Complex 3-D Geometries includ-
ing Multiple Bodies”, AIAA 95-1685, June 1995.

24Pirzadeh, S.: “Structured Background Grids for Generation of
Unstructured Grids by Advancing-Front Metho®IAA Journa)

Vol. 31, No. 2, pp. 257-265, February 1993.

11



